A role for the human single-stranded DNA binding protein HSSB/RPA in an early stage of nucleotide excision repair.

نویسندگان

  • D Coverley
  • M K Kenny
  • D P Lane
  • R D Wood
چکیده

The human single-stranded DNA binding protein (HSSB/RPA) is involved in several processes that maintain the integrity of the genome including DNA replication, homologous recombination, and nucleotide excision repair of damaged DNA. We report studies that analyze the role of HSSB in DNA repair. Specific protein-protein interactions appear to be involved in the repair function of HSSB, since it cannot be replaced by heterologous single-stranded DNA binding proteins. Anti-HSSB antibodies that inhibit the ability of HSSB to stimulate DNA polymerase alpha also inhibit repair synthesis mediated by human cell-free extracts. However, antibodies that neutralize DNA polymerase alpha do not inhibit repair synthesis. Repair is sensitive to aphidicolin, suggesting that DNA polymerase epsilon or delta participates in nucleotide excision repair by cell extracts. HSSB has a role other than generally stimulating synthesis by DNA polymerases, as it does not enhance the residual damage-dependent background synthesis displayed by repair-deficient extracts from xeroderma pigmentosum cells. Significantly, when damaged DNA is incised by the Escherichia coli UvrABC repair enzyme, human cell extracts can carry out repair synthesis even when HSSB has been neutralized with antibodies. This suggests that HSSB functions in an early stage of repair, rather than exclusively in repair synthesis. A model for the role of HSSB in repair is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylated and unphosphorylated forms of human single-stranded DNA-binding protein are equally active in simian virus 40 DNA replication and in nucleotide excision repair.

The trimeric human single-stranded DNA-binding protein (HSSB; also called RP-A) plays an essential role in DNA replication, nucleotide excision repair, and homologous DNA recombination. The p34 subunit of HSSB is phosphorylated at the G1/S boundary of the cell cycle or upon exposure of cells to DNA damage-inducing agents including ionizing and UV radiation. We have previously shown that the pho...

متن کامل

Interactions of human replication protein A with single-stranded DNA adducts.

Human RPA (replication protein A), a single-stranded DNA-binding protein, is required for many cellular pathways including DNA repair, recombination and replication. However, the role of RPA in nucleotide excision repair remains elusive. In the present study, we have systematically examined the binding of RPA to a battery of well-defined ssDNA (single-stranded DNA) substrates using fluorescence...

متن کامل

Stopped-flow kinetic analysis of replication protein A-binding DNA: damage recognition and affinity for single-stranded DNA reveal differential contributions of k(on) and k(off) rate constants.

Replication protein A (RPA) is a heterotrimeric protein required for many DNA metabolic functions, including replication, recombination, and nucleotide excision repair (NER). We report the pre-steady-state kinetic analysis of RPA-binding DNA substrates using a stopped-flow assay to elucidate the kinetics of DNA damage recognition. The bimolecular association rate, k(on), for RPA binding to dupl...

متن کامل

The evolutionarily conserved zinc finger motif in the largest subunit of human replication protein A is required for DNA replication and mismatch repair but not for nucleotide excision repair.

The largest subunit of the replication protein A (RPA) contains an evolutionarily conserved zinc finger motif that lies outside of the domains required for binding to single-stranded DNA or forming the RPA holocomplex. In previous studies, we showed that a point mutation in this motif (RPAm) cannot support SV40 DNA replication. We have now investigated the role of this motif in several steps of...

متن کامل

Human RPA (hSSB) interacts with EBNA1, the latent origin binding protein of Epstein-Barr virus.

RPA is the replicative single-strand DNA (ssDNA) binding protein of eukaryotic chromosomes. This report shows that human RPA interacts with EBNA1, the latent origin binding protein of Epstein-Barr virus (EBV). RPA binds to EBNA1 both in solution, and when EBNA1 is bound to the EBV origin. RPA is a heterotrimer, and the main contact with EBNA1 is formed through the 70 kDa subunit of RPA, the sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 20 15  شماره 

صفحات  -

تاریخ انتشار 1992